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0. CAMPOS

En este capítulo veremos resultados básicos de campos, así como algunos ejem-
plos. Para poder definir el concepto de campo, necesitamos primero saber que es
una operación binaria sobre un conjunto A.

Definición 0.1
Sea A un conjunto, una operación binaria en A es una función

µ : A × A → A

que asigna a cada pareja ordenada (a1, a2) ∈ A × A un único elemento de A de-
notado µ(a1, a2).

Ejemplos 0.1
Los siguientes son ejemplos de operaciones binarias.

1. La suma y producto de números enteros (racionaeles, reales).

2. Sea A un conjunto y µ : P(A) × P(A) → P(A) la función definida como
µ(B, C) = B ∩ C, donde P(A) denota al conjunto potencia de A.

Ahora que ya sabes lo que es una operación binaria, da otros ejemplos.

Definición 0.2
Un campo consiste de un conjunto F y dos operaciones binarias en F

+ : F × F → F donde + (a, b) := a + b

⋆ : F × F → F donde ⋆ (a, b) := a ⋆ b

llamadas suma y producto respectivamente y que satisfacen las siguientes propie-
dades, llamadas Axiomas de Campo.
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• S1. La suma es asociativa.
(a + b) + c = a + (b + c) para cada a, b, c ∈ F.

• S2. La suma es conmutativa.
a + b = b + a para cada a, b ∈ F.

• S3. Existencia de neutro aditivo.
Existe e ∈ F tal que a + e = a = e + a para cada a ∈ F, el elemento e se llama
un neutro aditivo de F.

• S4. Existencia de inversos aditivos.
Para cada a ∈ F existe a′ ∈ F tal que a + a′ = e = a′ + a, el elemento a′ se
llama un inverso aditivo de a.

• P1. El producto es asociativo.
a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c para cada a, b, c ∈ F.

• P2. El producto es conmutativo.
a ⋆ b = b ⋆ a para cada a, b ∈ F.

• P3. Existencia de neutro multiplicativo.
Existe u ∈ F tal que u no es neutro aditivo y para cada a ∈ F, a ⋆ u = a =

u ⋆ a, el elemento u se llama un neutro multiplicativo de F.

• P4. Existencia de inversos multiplicativos.
Para cada a ∈ F tal que a no es un neutro aditivo, existe d ∈ F tal que
a ⋆ d = u = d ⋆ a, el elemento d se llama un inverso multiplicativo de a.

• D. Ley Distributiva.
a ⋆ (b + c) = a ⋆ b + a ⋆ c para cada a, b, c ∈ F.

Observa que los axiomas S3 y P3 garantizan que en un campo, hay al menos un
neutro aditivo y un neutro multiplicativo y que son distintos, asimismo, el axio-
ma S4 nos dice que cada elemento del campo tiene al menos un inverso aditivo y
el axioma P4 que cada elemento del campo que no es un neutro aditivo, tiene al
menos un inverso multiplicativo. Nuestro siguiente objetivo es probar la unicidad
de estos elementos.

Nota.
En lugar de escribir el producto como a ⋆ b, omitimos el símbolo ⋆ y escribimos
ab.
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Teorema 0.1 Leyes de Cancelación. Sea F un campo.

1. Ley de la cancelación para la suma.
Si a+b=a+c donde a, b, c ∈ F entonces b = c.

2. Ley de la cancelación para el producto.
Si ab = ac donde a, b, c ∈ F y a no es un neutro aditivo, entonces b = c.

demostración:

1. Por S4, existe a′ ∈ F un inverso aditivo de a. Entonces, usando la asociativi-
dad de la suma obtenemos

b = a′ + (a + b) = a′ + (a + c) = c

2. Por P4, existe d ∈ F un inverso multiplicativo de a. Usando la asociatividad
del producto obtenemos

b = d(ab) = d(ac) = c

Teorema 0.2
Sea F un campo, entonces

1. F tiene un único neutro aditivo.

2. F tiene un único neutro multiplicativo.

demostración:

1. Supongamos que e y e′ son neutros aditivos de F, entonces

e′ = e + e′ = e

2. Supongamos que u y u′ son neutros multiplicativos de F, entonces

u′ = uu′ = u

Ahora que ya hemos probado que un campo tiene un único inverso aditivo y un
único inverso multiplicativo, podemos asignarles un símbolo para representarlos.
Denotamos por 0F = 0 al neutro aditivo de F y lo llamamos el cero de F. Denota-
mos por 1F = 1 al neutro multiplicativo de F y lo llamamos el uno de F.

Observemos que decir que un elemento a de F no es neutro aditivo es lo mis-
mo que escribir a ̸= 0.
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Teorema 0.3
Sea F un campo.

1. Cada elemento a ∈ F tiene un único inverso aditivo.

2. Cada elemento a ∈ F, a ̸= 0, tiene un único inverso multiplicativo.

demostración:

1. Sea a ∈ F y supongamos que a′ y a” son inversos aditivos de a, entonces

a′ = a′ + 0 = a′ + (a + a”) = (a + a′) + a” = 0 + a” = a”

2. Sea a ∈ F, a ̸= 0 y supongamos que d y d′ son inversos multiplicativos de a,
entonces

d′ = d′1 = d′(ad”) = (d′a)d” = 1d” = d”

Nota
Sea a un elemento de un campo F, denotamos con el símbolo −a al inverso aditivo
de a, si a ̸= 0 denotamos con el símbolo a−1 al inverso multiplicativo de a.

Teorema 0.4
Sea F un campo y a, b, c ∈ F. los siguientes enunciados son equivalentes

1. Si ab = ac y a ̸= 0 entonces b = c.

2. Si ab = 0 y a ̸= 0 entonces b = 0

La demostración se deja como ejercicio al lector. A continuación veremos propie-
dades aritméticas de la suma y el producto en un campo.

Teorema 0.5
Sea F un campo, entonces

1. 0Fa = 0F para cada a ∈ F.

2. −1Fa = −a para cada a ∈ F.

3. −(−a) = a para cada a ∈ F.

4. −(ab) = −a(b) = a(−b) para cada a, b ∈ F.
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demostración:

1. Como 0F es neutro aditivo y por la ley distributiva, tenemos que

0F + 0Fa = 0Fa = (0F + 0F)a = 0Fa + 0Fa

Por la ley de la cancelación para la suma, podemos concluir que 0Fa = 0F.

2. Debemos mostrar que −1Fa es el inverso aditivo de a, así que por la uni-
cidad del inverso aditivo de a, basta probar que −1Fa + a = 0F. Por la ley
distributiva obtenemos

−1Fa + a = −1Fa + 1Fa = (−1F + 1F)a = 0Fa = 0F

3. Por la unicidad del inverso aditivo de −a, basta probar que −a + a = 0F,
pero esto es cierto ya que −a es el inverso aditivo de a.

4. Probaremos que −(ab) = −a(b), la otra igualdad se prueba de forma similar.
Por la unicidad del inverso aditivo de ab, basta probar que a(−b) + ab = 0F.
Por la ley distributiva obtenemos

a(−b) + ab = a(−b + b) = a0F = 0F

Teorema 0.6
Sea F un campo y x, y, x1, . . . , xn elementos de F distintos de 0 = 0F, entonces

1. xy ̸= 0 y (xy)−1 = x−1y−1.

2. (x1x2 . . . xn)−1 = x−1
1 x−1

2 . . . x−1
n .

3. (x−1)−1 = 1

4. 1−1 = 1; (−1)−1 = −1; (−1)(−1) = 1.

La demostración se deja como ejercicio al lector.

Definición 0.3
Sea F un campo y x ∈ F, x ̸= 0, definimos la n-ésima potencia de x recursivamente

x0 = 1, x1 = x y para n ≥ 2, xn = xn−1x

Para cada n ∈ N, definimos x−n = (x−1)n.
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Teorema 0.7
Leyes de los exponentes.

1. xmxn = xm+n para cada m, n ∈ Z.

2. (xm)n = xmn para cada m, n ∈ Z.

3. (xy)m = xmym para cada m ∈ Z

4. x−m = (x−1)m = (xm)−1

demostración:
Probaremos el primer inciso, los otros 3 se dejan como ejercicio.

Si m = 0 y n es cualquier número natural, entonces x0xn = 1xn = xn = x0+n.
De forma análoga si n = 0 y m es cualquier número natural. Si m = 0 = n enton-
ces x0x0 = 1 y x0+0 = x0 = 1.

Sea m un número natural fijo, probaremos que para cualquier número natural
n, se cumple que xmxn = xm+n. Para ello, procedemos por inducción sobre n.

Base de la inducción: para n = 1 hay que probar que xmx1 = xm+1. La igual-
dad anterior es cierta por definición de las potencias de x.

Hipótesis de inducción: supongamos que es cierto para n, es decir que xmxn =

xm+n, debemos probar que es cierto para n + 1, esto es, xmxn+1 = xm+(n+1). Tene-
mos que

xmxn+1 = xm(xnx1) = (xmxn)x1 = xm+nx = x(m+n)+1 = xm+(n+1)

donde la tercera igualdad es cierta por hipótesis de inducción.

Hasta aquí, hemos probado que para cada m, n enteros no negativos, xmxn =

xm+n.
Por otro lado, para cada m, n ∈ N,

x−m−n = x−(m+n) = (x−1)m+n = (x−1)m(x−1)n = x−mx−n

En consecuencia, la igualdad es cierta para cada par de números enteros m, n.

En clase vimos que el conjunto de números racionales (reales, complejos) con la
suma y producto de números racionales (reales, complejos) son campos. También
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construímos un campo con dos elementos.

Finalizamos esta sección con otro ejemplo.
Sea Q(i) = {x + iy ∈ C|x, y ∈ Q} el conjunto de números complejos con coor-
denadas racionales. Prueba que Q(i) es un campo con la suma y producto de
números complejos.
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